If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+960
We move all terms to the left:
0-(-16t^2+960)=0
We add all the numbers together, and all the variables
-(-16t^2+960)=0
We get rid of parentheses
16t^2-960=0
a = 16; b = 0; c = -960;
Δ = b2-4ac
Δ = 02-4·16·(-960)
Δ = 61440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61440}=\sqrt{4096*15}=\sqrt{4096}*\sqrt{15}=64\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{15}}{2*16}=\frac{0-64\sqrt{15}}{32} =-\frac{64\sqrt{15}}{32} =-2\sqrt{15} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{15}}{2*16}=\frac{0+64\sqrt{15}}{32} =\frac{64\sqrt{15}}{32} =2\sqrt{15} $
| 5x+7=-89-7x5 | | 12x-251=2x-11 | | 6+7b=6+18b | | w/7−4= 1 | | 6b+7b=6+18b | | 2/9x+1/9=-2 | | 22=2(x=8) | | 25+3z=85 | | 10=2x+120 | | 28/g=4 | | 7=21-2u | | 7=21−2u | | x/4-3x/7=12 | | X2+1x-202=0 | | 4/x-4=16/x+2 | | 5+8x=-16+× | | 4/x-4=16/x=2 | | 2x+3×(5x+7)=2×(3+10x) | | 10x(46-4x)=106 | | 1x+(x/2)=15 | | 1x+1/2x=15 | | 4y-14=33 | | -20=5a | | 7h-3=2h+12 | | x/5-15=225 | | x5-15=225 | | (8d-16)/2=24+16 | | 2/3·(6x-9)=2 | | 6y+1=42 | | 4m+5=17m= | | 8k-5=5k=1 | | 11x+5=12-x+65 |